首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Cytochrome c Maturation Operon Is Involved in Manganese Oxidation in Pseudomonas putida GB-1
Authors:J P M de Vrind  G J Brouwers  P L A M Corstjens  J den Dulk  E W de Vrind-de Jong
Institution:Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
Abstract:A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.In a number of studies during the last three decades it has been shown that various microbial species are able to stimulate the oxidation of Mn2+ through direct catalysis. These organisms produce proteinaceous macromolecules which catalyze the oxidation reaction. Manganese oxidations by a soil Arthrobacter species (24), Oceanospirillum and Vibrio strains (2, 3), Pseudomonas putida MnB1 (22, 30), Leptothrix discophora SS-1 (1, 11), and marine Bacillus strain SG-1 (23) are examples in which enzymes are most likely involved in the process. P. putida MnB1 produces a soluble protein which catalytically oxidizes Mn2+ in cell extracts (22). Manganese-oxidizing proteins from L. discophora SS-1 (1, 11) and from the spore coats of Bacillus strain SG-1 (43) have been identified on polyacrylamide gels. The oxidizing proteins have not been quantitatively purified or analyzed so far. In Bacillus strain SG-1, an operon containing seven genes appears to be involved in Mn2+ oxidation (46). One of these genes encodes a 137-kDa protein related to the family of multicopper oxidases (47). In a previous study we reported the isolation of a structural gene and its promoter postulated to be involved in Mn2+ oxidation in L. discophora (19). The encoded protein also contains the copper-binding signatures of multicopper oxidases. The oxidase-related proteins may represent Mn2+-oxidizing enzymes (44), but evidence supporting this hypothesis is still lacking.In this paper we describe a genetic analysis of Mn2+ oxidation in a freshwater Pseudomonas strain, strain GB-1. In a previous study (32) this strain was preliminarily identified as a Pseudomonas fluorescens strain, but more recent data (see Materials and Methods) indicate that it should be identified as a P. putida strain. When supplied with Mn2+ ions, the cells deposit manganese oxide around the outer membrane in the early stationary growth phase (32). They form brown colonies on Mn2+-containing agar. Experiments performed with cell extracts indicated that Mn2+ oxidation is catalyzed by a protein. The Mn2+-oxidizing factor was partially purified, and electrophoresis on an acrylamide gradient gel revealed oxidizing proteins with apparent molecular weights of ca. 250,000 and 180,000 (32). An additional oxidizing factor with a lower molecular weight (ca. 130,000) was identified in another study by using different isolation and electrophoretic procedures (16). It has been suggested that the Mn2+-oxidizing protein isolated is part of a larger complex which disintegrates into smaller fragments that retain activity (32). The protein is supposed to be located in the outer membrane of the bacteria. It has not been chemically characterized, and nothing is known about its cellular function or about the possible involvement of other cellular components, such as electron carriers, in Mn2+ oxidation.We used transposon mutagenesis to identify genes relevant to the Mn2+-oxidizing process in P. putida GB-1. One of these genes appeared to be part of the cytochrome c maturation operon. Transposon insertion in this gene not only abolished Mn2+ oxidation but also led to secretion of siderophores and porphyrins.An accompanying report on the involvement of the cytochrome c maturation operon in Mn2+ oxidation in P. putida MnB1 (14) supports our findings.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号