Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. |
| |
Authors: | John den Engelsman Erik J Bennink Linda Doerwald Carla Onnekink Lisa Wunderink Usha P Andley Kanefusa Kato Wilfried W de Jong Wilbert C Boelens |
| |
Affiliation: | Department of Biochemistry 161, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, the Netherlands. |
| |
Abstract: | The mammalian small heat shock protein alphaB-crystallin can be phosphorylated at three different sites, Ser19, Ser45 and Ser59. We compared the intracellular distribution of wild-type, nonphosphorylatable and all possible pseudophosphorylation mutants of alphaB-crystallin by immunoblot and immunocytochemical analyses of stable and transiently transfected cells. We observed that pseudophosphorylation at two (especially S19D/S45D) or all three (S19D/S45D/S59D) sites induced the partial translocation of alphaB-crystallin from the detergent-soluble to the detergent-insoluble fraction. Double immunofluorescence studies showed that the pseudophosphorylation mutants localized in nuclear speckles containing the splicing factor SC35. The alphaB-crystallin mutants in these speckles were resistant to mild detergent treatment, and also to DNase I or RNase A digestion, indicating a stable interaction with one or more speckle proteins, not dependent on intact DNA or RNA. We further found that FBX4, an adaptor protein of the ubiquitin-protein isopeptide ligase SKP1/CUL1/F-box known to interact with pseudophosphorylated alphaB-crystallin, was also recruited to SC35 speckles when cotransfected with the pseudophosphorylation mutants. Because SC35 speckles also react with an antibody against alphaB-crystallin endogenously phosphorylated at Ser45, our findings suggest that alphaB-crystallin has a phosphorylation-dependent role in the ubiquitination of a component of SC35 speckles. |
| |
Keywords: | |
|
|