首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoluminescence study of charge recombination in Photosystem II at low temperatures. II. Oscillatory properties of the Zv and A thermoluminescence bands in chloroplasts dark-adapted for various time periods
Affiliation:1. Construction Technologies Institute of the National Research Council of Italy, via Lombardia 49, San Giuliano Milanese 20098, Italy
Abstract:The oscillations of the ZV and A thermoluminescence bands were investigated in spinach chloroplasts which had been dark-adapted for various time periods and subjected to a series of flashes at +2°C before continuous illumination at various low temperatures. When excited with continuous light below −65°C, the ZV band exhibited period-4 oscillation, with maxima on preflashes 0, 4 and 8. Above −65°C, the oscillation pattern depended greatly on the dark-adaptation period of the chloroplasts. In preilluminated samples (15 s light followed by 3 min dark), when the QB pool is half oxidized, the oscillation of the thermoluminescence intensity measured at −50°C was similar to that observed below −65°C. However, after the thorough dark-adaptation of the chloroplasts (6 h), when the major fraction of the QB pool is assumed to be oxidized, a binary oscillation appeared in the oscillation pattern, with maxima at odd flash numbers. Below −65°C, period-2 oscillation of the ZV band could not be induced by the dark-adaptation of the chloroplasts, suggesting an inhibition of electron exchange between QA and QB. Upon excitation of the chloroplasts with continuous light at −30°C, the A band oscillated with a periodicity of 4 with maxima at preflash numbers 2 and 6. At pH 7.5, the period-4 oscillation was converted into a period-2 oscillation by thorough dark-adaptation of the chloroplasts (24 h). Model calculations of the oscillatory patterns suggest that the period-4 oscillations of the ZV and A bands are determined by the concentrations [S0] + [S1] and [S2] + [S3], respectively, which are present after the preflashes prior to the low-temperature continuous illumination. The period-2 oscillations in the amplitudes of the ZV and A bands reflect the changes occurring in the redox state of the QB pool in a sequence of flashes. The possible relationship between the characteristics of the ZV and A bands and the temperature-dependence of the S state transitions was investigated. Comparison of the amplitudal changes of the B (S2QB and S3QB recombination) and Q (S2QA recombination) thermoluminescence bands as a function of the excitation temperature suggests that the S2 → S3 and S3 → S4 transitions are blocked at about −65 and −40°C, respectively. It is also concluded that the thermoluminescence intensity emitted by the reaction center is about twice as high in the S3 state as in the S2 state.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号