首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Importance of a single base pair for discrimination between intron-containing and intronless alleles by endonuclease I-BmoI
Authors:Edgell David R  Stanger Matthew J  Belfort Marlene
Institution:Molecular Genetics Program, Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002, USA. edgell@wadsworth.org
Abstract:Homing endonucleases initiate mobility of their host group I introns by binding to and cleaving lengthy recognition sequences that are typically centered on the intron insertion site (IS) of intronless alleles. Because the intron interrupts the endonucleases' recognition sequence, intron-containing alleles are immune to cleavage by their own endonuclease. I-TevI and I-BmoI are related GIY-YIG endonucleases that bind a homologous stretch of thymidylate synthase (TS)-encoding DNA but use different strategies to distinguish intronless from intron-containing substrates. I-TevI discriminates between substrates at the level of DNA binding, as its recognition sequence is centered on the intron IS. I-BmoI, in contrast, possesses a very asymmetric recognition sequence with respect to the intron IS, binds both intron-containing and intronless TS-encoding substrates, but efficiently cleaves only intronless substrate. Here, we show that I-BmoI is extremely tolerant of multiple substitutions around its cleavage sites and has a low specific activity. However, a single G-C base pair, at position -2 of a 39-base pair recognition sequence, is a major determinant for cleavage efficiency and distinguishes intronless from intron-containing alleles. Strikingly, this G-C base pair is universally conserved in phylogenetically diverse TS-coding sequences; this finding suggests that I-BmoI has evolved exquisite cleavage requirements to maximize the potential to spread to variant intronless alleles, while minimizing cleavage at its own intron-containing allele.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号