首页 | 本学科首页   官方微博 | 高级检索  
     


Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study
Authors:Winnie Wai-Ying Kam  Aimee L. McNamara  Vanessa Lake  Connie Banos  Justin B. Davies  Zdenka Kuncic  Richard B. Banati
Affiliation:1. Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia;2. School of Physics, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia;3. National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia;4. Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
Abstract:It is a widely accepted that the cell nucleus is the primary site of radiation damage while extra-nuclear radiation effects are not yet systematically included into models of radiation damage.We performed Monte Carlo simulations assuming a spherical cell (diameter 11.5 μm) modelled after JURKAT cells with the inclusion of realistic elemental composition data based on published literature. The cell model consists of cytoplasm (density 1 g/cm3), nucleus (diameter 8.5 μm; 40% of cell volume) as well as cylindrical mitochondria (diameter 1 μm; volume 0.5 μm3) of three different densities (1, 2 and 10 g/cm3) and total mitochondrial volume relative to the cell volume (10, 20, 30%). Our simulation predicts that if mitochondria take up more than 20% of a cell's volume, ionisation events will be the preferentially located in mitochondria rather than in the cell nucleus.Using quantitative polymerase chain reaction, we substantiate in JURKAT cells that human mitochondria respond to gamma radiation with early (within 30 min) differential changes in the expression levels of 18 mitochondrially encoded genes, whereby the number of regulated genes varies in a dose-dependent but non-linear pattern (10 Gy: 1 gene; 50 Gy: 5 genes; 100 Gy: 12 genes).The simulation data as well as the experimental observations suggest that current models of acute radiation effects, which largely focus on nuclear effects, might benefit from more systematic considerations of the early mitochondrial responses and how these may subsequently determine cell response to ionising radiation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号