首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cytotoxic-T-Lymphocyte-Mediated Elimination of Target Cells Transduced with Engineered Adeno-Associated Virus Type 2 Vector In Vivo
Authors:Chengwen Li  Matt Hirsch  Nina DiPrimio  Aravind Asokan  Kevin Goudy  Roland Tisch  R Jude Samulski
Institution:Gene Therapy Center,1. Department of Pharmacology,2. Department of Genetics,3. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 275994.
Abstract:A recent clinical trial in patients with hemophilia B has suggested that adeno-associated virus (AAV) capsid-specific cytotoxic T lymphocytes (CTLs) eliminated AAV-transduced hepatocytes and resulted in therapeutic failure. AAV capsids elicit a CTL response in animal models; however, these capsid-specific CTLs fail to kill AAV-transduced target cells in mice. To better model the human clinical trial data in mice, we introduced an immunodominant epitope derived from ovalbumin (OVA; SIINFEKL) into the AAV capsid and tested CTL-mediated killing of AAV2-transduced target tissues in vivo. Initially, in vitro experiments demonstrated both classical class I and cross-presentation of the OVA antigen, following endogenous expression or AAV2-OVA vector transduction, respectively. Furthermore, an OVA-specific CTL response was elicited after muscular or systemic injection of the AAV2-OVA vector. Finally, CTL reactivity was enhanced in mice with established SIINFEKL-specific immunity after AAV2-OVA/α1 anti-trypsin (AAT) administration. Most importantly, these OVA-specific CTLs decreased AAT expression in mice treated with AAV2-OVA/AAT vector that followed a time course mimicking uncoating kinetics of AAV2 transduction in OVA-immunized mice. These results demonstrate that AAV capsid-derived antigens elicit CD8+ CTL reactivity, and these CTLs eliminated AAV-transduced target cells in mice. Notably, this model system can be exploited to study the kinetics of capsid presentation from different serotypes of AAV and permit the design of novel strategies to block CTL-mediated killing of AAV-transduced cells.Adeno-associated virus (AAV) is a single-stranded DNA parvovirus. Its replication relies on coinfection of a helper virus such as adenovirus or herpesvirus. In the absence of a helper virus, AAV establishes latency to integrate into the AAVS1 site of host chromosome 19 (11). The genome of AAV is ∼4.7 kb and contains two open reading frames encoding replication proteins and structural capsid proteins (21). The capsid proteins (VP) are composed of VP1, VP2, and VP3. The VP3 protein is the major structural component and constitutes nearly 80% of the virion shell with an overall ratio of 1:1:8 for VP1, VP2, VP3, respectively. While VP2 is thought to be nonessential for AAV transduction (30), the VP1 subunit contains a phospholipase A2 domain required for infectivity (9). Recombinant AAV (rAAV) vectors require only the 145-bp terminal repeats of the AAV genome in cis and all other viral factors supplied in trans for production (18). rAAV vectors have rapidly gained popularity in gene therapy applications and have proven effective in preclinical studies/clinical trials for a number of diseases (20, 31, 33).AAV vectors mount a potent humoral immune response against capsid in animals and human. However, AAV vectors only contain the therapeutic gene flanked by two 145-bp AAV terminal repeats devoid of any AAV genes(23). In addition, AAV initiates long-term stable therapeutic gene expression in animal models (3-5, 17, 31). Based on these observations AAV has been thought to be relatively nonimmunogenic regarding the induction of cytotoxic T lymphocytes (CTLs) specific for capsid proteins. In spite of all of these observations, the recent clinical trial for hemophilia B (F9) gene therapy has otherwise suggested that AAV2 capsid initiates cell-mediated immunity that eliminates the AAV2 encoding F9 (AAV2/F9) vector transduced liver cells (15). Against this backdrop, numerous attempts to replicate aforementioned observations in animal models have been made. Preliminary results from these studies support direct presentation and cross-presentation of the AAV2 capsid in animal models (6, 12, 13, 22, 29). However, capsid-specific CTLs did not eliminate AAV2-transduced target cells in mice (12, 13, 29), inconsistent with observations made in a clinical trial for hemophilia B with AAV2/F9 gene therapy. A potential explanation for this discrepancy is the weak immunogenicity of the AAV2 capsid in mice. Accordingly, we hypothesized that incorporation of a peptide epitope into the AAV2 capsid would increase immunogenicity of the rAAV and therefore could be exploited to mimic events ongoing in humans and study approaches to block capsid-specific CTL reactivity in mice.We chose to introduce the MHC-H2Kb-restricted SIINFEKL peptide derived from ovalbumin (OVA) into AAV2 capsid. Integration of the OVA epitope into AAV capsids elicited a specific CTL response. Most importantly, after administration of genetically engineered AAV2 vectors into OVA peptide-immunized mice, OVA-specific CTL reactivity was further enhanced, thereby limiting transgene expression in vivo. The modified vector described herein is a potentially valuable tool for future studies focused on developing strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in animal models.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号