首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations in Domain I Interhelical Loops Affect the Rate of Pore Formation by the Bacillus thuringiensis Cry1Aa Toxin in Insect Midgut Brush Border Membrane Vesicles
Authors:Geneviève Lebel  Vincent Vachon  Gabrielle Préfontaine  Frédéric Girard  Luke Masson  Marc Juteau  Aliou Bah  Geneviève Larouche  Charles Vincent  Raynald Laprade  Jean-Louis Schwartz
Institution:Groupe d''Étude des Protéines Membranaires, Université de Montréal,1. Biotechnology Research Institute, National Research Council, Montreal, Quebec,2. Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada3.
Abstract:Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.Once ingested by susceptible insect larvae, the insecticidal crystal proteins of Bacillus thuringiensis are solubilized and converted to their toxic form by midgut proteases. The activated toxins bind to specific receptors on the surface of the luminal membrane of midgut columnar cells, insert into the membrane, and form pores that abolish transmembrane ionic gradients and osmotic balance, leading to the disruption of the epithelium and death of the insect (47, 51). Members of the B. thuringiensis Cry toxin family for which the atomic structure has been reported share a similar three-domain organization in which domain I is composed of a bundle of six amphipathic α-helices surrounding a hydrophobic helix (α5), and domains II and III are formed mostly of β-sheets (7, 8, 18, 26, 37, 38, 43). While domains II and III are thought to be involved in receptor binding and toxin specificity (47), domain I is believed to play a major role in membrane insertion and pore formation (51). Toxin fragments corresponding to domain I of Cry1Ac (62), Cry3Aa (53), and Cry3Ba (61) or to the first five α-helices of Cry4B (48) have been shown to form pores in model membranes. Pore formation in artificial membranes has also been demonstrated with synthetic peptides corresponding to α5 of Cry1Ac (13) and Cry3Aa (19, 21) and to the α4-loop-α5 segment of Cry3Aa (23). Spectroscopic studies have also revealed that while synthetic peptides corresponding to α4 and α5 can coassemble within a lipid bilayer, those corresponding to α2, α3, α6, and α7 adopt a membrane surface orientation (20, 22). In agreement with these findings, α4 was shown to line the lumen of the pores (42). On the other hand, convincing evidence supporting previous suggestions that most of the toxin molecule may become imbedded in the membrane (3, 39, 60) has recently been reported (44, 45).Thus, several models have been proposed for the mechanism of toxin insertion and pore formation (4, 9, 28, 32, 39, 44, 52, 56). Although these models differ in the identities of the toxin segments that are suggested to insert into the membrane, they all imply that the toxin undergoes conformational changes following binding to the membrane surface. Even though such changes imply rotations about the polypeptide backbone in domain I interhelical loops, little attention has been devoted so far to the role of domain I loop residues in pore formation.In the present study, amino acid residues strategically located within each of these loops in Cry1Aa were replaced by a cysteine using site-directed mutagenesis. The resulting mutant toxins were assayed with Manduca sexta midgut brush border membrane vesicles using a light-scattering technique. Mutations mapping within several of these loops altered the functional properties of Cry1Aa, suggesting the involvement of most domain I α-helices in the pore-forming process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号