首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyanide and sulfide interact with nitrogenous compounds to influence the relaxation of various smooth muscles
Authors:H Kruszyna  R Kruszyna  R P Smith
Abstract:Sodium nitroprusside relaxed guinea pig ileum after the segment had been submaximally contracted by either histamine or acetylcholine, intact isolated rabbit gall bladder after submaximal contraction by either acetylcholine or cholecystokinin octapeptide, and rat pulmonary artery helical strips after submaximal contraction with norepinephrine. In each of these cases the relaxation produced by nitroprusside was at least partially reversed by the subsequent addition of excess sodium cyanide. Cyanide, however, in nontoxic concentrations did not reverse the spasmolytic effects of hydroxylamine hydrochloride, sodium azide, nitroglycerin, sodium nitrite, or nitric oxide hemoglobin on guinea pig ileum, nor did cyanide alone in the same concentrations have any effect. The similar interaction between nitroprusside and cyanide on rabbit aortic strips is not dependent on the presence of an intact endothelial cell layer. Also, on rabbit aortic strips and like cyanide, sodium sulfide reversed the spasmolytic effects of azide and hydroxylamine, but it had little or no effect on the relaxation induced by papaverine. Unlike cyanide, however, sulfide augmented the relaxation induced by nitroprusside, and it reversed the effects of nitric oxide hemoglobin, nitroglycerin, and nitrite. A direct chemical reaction between sulfide and nitroprusside may account for the difference between it and cyanide. Although evidence was obtained also for a direct chemical reaction between sulfide and norepinephrine, that reaction does not seem to have played a role in these results. These observations suggest the existence of at least three distinct subclasses of so-called nitric oxide vasodilators. At least in some cases cyanide and sulfide cannot be acting by the same mechanism in their modifications of the responses to the agonists.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号