首页 | 本学科首页   官方微博 | 高级检索  
     


A lysine residue involved in the inhibition of vacuolar H(+)-pyrophosphatase by fluorescein 5'-isothiocyanate
Authors:Yang S J  Jiang S S  Van R C  Hsiao Y Y  Pan R
Affiliation:Department of Radiological Technology, Chungtai Institute of Health Sciences and Technology, Taichung 40605, Taiwan, ROC.
Abstract:Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a central role in the electrogenic translocation of protons from cytosol to the vacuole lumen at the expense of PP(i) hydrolysis. A fluorescent probe, fluorescein 5'-isothiocyanate (FITC), was used to modify a lysine residue of vacuolar H(+)-PPase. The enzymatic activity and its associated H(+) translocation of vacuolar H(+)-PPase were markedly decreased by FITC in a concentration-dependent manner. The inhibition of enzymatic activity followed pseudo-first-order rate kinetics. A double-logarithmic plot of the apparent reaction rate constant against FITC concentration yielded a straight line with a slope of 0.89, suggesting that the alteration of a single lysine residue on the enzyme is sufficient to inhibit vacuolar H(+)-PPase. Changes in K(m) but not V(max) values of vacuolar H(+)-PPase as inhibited by FITC were obtained, indicating that the labeling caused a modification in affinity of the enzyme to its substrate. FITC inhibition of vacuolar H(+)-PPase could be protected by its physiological substrate, Mg(2+)-PP(i). These results indicate that FITC might specifically compete with the substrate at the active site and the FITC-labeled lysine residue locates probably in or near the catalytic domain of the enzyme. The enhancement of fluorescence intensity and the blue shift of the emission maximum of FITC after modification of vacuolar H(+)-PPase suggest that the FITC-labeled lysine residue is located in a relatively hydrophobic region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号