首页 | 本学科首页   官方微博 | 高级检索  
     


A multi-scale approach to prioritize wetland restoration for watershed-level water quality improvement
Authors:Neal E. Flanagan  Curtis J. Richardson
Affiliation:(1) Duke University Wetland Center, Durham, NC 27708, USA
Abstract:Wetland restoration is commonly presented as an important strategy for maintaining and enhancing the water quality and ecological capital of watershed-scale ecosystems. Prioritizing restoration sites on the landscape is often a haphazard process based on widely held, though often untested, assumptions about relationships between watershed characteristics and water quality. We present a framework to target and prioritize wetland restoration locations using both regional and watershed-level screening models. The regression-tree and random forest models presented in this paper identify watershed variables with the strongest relationships to a given water quality parameter, present a clear hierarchy of variable importance, and present approximate thresholds in watershed area where these variables express the greatest impact on water quality. The proportion of watersheds classified as prior-converted agricultural land was an important predictor of both ortho and total phosphorus. Fortunately because prior-converted agricultural lands were historically wetlands, they are often very suitable for wetland restoration. These sites often have poorly-drained soils requiring artificial drainage to be suitable for agriculture. These drainage systems become conduits for transporting phosphorus from agricultural field and to area streams and rivers. Maintaining natural land-cover within stream buffers is identified as another important predictor of water quality. This seems to be especially true with regard to NO3–NO2 concentrations. Our model results support specific management recommendations including: (a) exclusion of agricultural land-uses from riparian buffers, (b) maintaining or increasing watershed-level wetland-cover and (c) reducing wetland fragmentation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号