首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Batch and semi-continuous microalgal TAG production in lab-scale and outdoor photobioreactors
Authors:Giulia Benvenuti  Rouke Bosma  Fang Ji  Packo Lamers  Maria J Barbosa  René H Wijffels
Institution:1.Bioprocess Engineering, AlgaePARC,Wageningen University,Wageningen,The Netherlands;2.Biomass Engineering Center,China Agricultural University,Beijing,China;3.Biosciences and Aquaculture,Nordland University,Bod?,Norway
Abstract:Microalgal triglycerides (TAGs) represent a sustainable feedstock for food, chemical and biofuel industries. The operational strategy (batch, semi-continuous, continuous cultivations) has an impact on the TAG productivity. In this study, semi-continuous (i.e. with fixed harvesting frequency) and batch cultivations were compared on TAG production both at lab-scale and in outdoor cultivations. At lab-scale, the semi-continuous TAG productivity was highest for a cycle time of 2 days (SC1; 0.21 g L?1 day?1) and similar to the maximum obtained with the batch (optimal harvest time; 0.23 g L?1 day?1). Although TAG content was lower for SC1 (22 %) than for the batch (35 %), higher biomass productivities were obtained with SC1. Outdoors, semi-continuous cultivations were subjected to a lower degree of stress (i.e. higher amount of nitrogen present in the system relative to the given irradiance) compared to lab-scale. This yielded low and similar TAG contents (10–13 %) in the different semi-continuous runs that were outdone by the batch on both TAG content (15–25 %) and productivity (batch, 0.97–2.46 g m?2 day?1; semi-continuous, 0.35–0.85 g m?2 day?1). The lab-scale experiments showed that semi-continuous strategies, besides leading to similar TAG productivities compared to the batch, could make TAG production cost effective by valorising also non-TAG compounds. However, optimization of outdoor semi-continuous cultivations is still required. For instance, the nitrogen supply and the harvest frequency should be adjusted on the total irradiance. Additionally, future research should focus on recovery metabolism upon nitrogen resupply.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号