首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of nitrogen sources and transformations within karst springs using isotope tracers of nitrogen
Authors:Andrea R. Albertin  James O. Sickman  Agnieszka Pinowska  R. Jan Stevenson
Affiliation:1. Soil and Water Science Department, University of Florida, Gainesville, FL, 32606, USA
2. School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32606, USA
3. Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
4. Advanced Fuels Division, General Atomics, San Diego, CA, USA
5. Department of Zoology, Michigan State University, East Lansing, MI, 48824, USA
Abstract:Isotope analyses of nitrate and algae were used to gain better understanding of sources of nitrate to Florida’s karst springs and processes affecting nitrate in the Floridan aquifer at multiple scales. In wet years, δ15N and δ18O of nitrate ranged from +3 to +9‰ in headwater springs in north Florida, indicating nitrification of soil ammonium as the dominant source. With below normal rainfall, the δ15N and δ18O of nitrate were higher in almost all springs (reaching +20.2 and +15.3‰, respectively) and were negatively correlated with dissolved oxygen. In springs with values of δ15N-NO3 and δ18O-NO3 greater than +10‰, nitrate concentrations declined 40–50% in dry years and variations in the δ15N and δ18O of nitrate were consistent with the effects of denitrification. Modeling of the aquifer as a closed system yielded in situ fractionation caused by denitrification of 9 and 18‰ for Δ18O and Δ15N, respectively. We observed no strong evidence for local sources of nitrate along spring runs; concentrations declined downstream (0.42–3.3?μmol-NO3 L?1 per km) and the isotopic dynamics of algae and nitrate indicated a closed system. Correlation between the δ15N composition of nitrate and algae was observed at regional and spring-run scales, but the relationship was complicated by varying isotopic fractionation factors associated with nitrate uptake (Δ ranged from 2 to 13‰). Our study demonstrates that nitrate inputs to Florida’s springs are derived predominantly from non-point sources and that denitrification is detectable in aquifer waters with relatively long residence time (i.e., matrix flow).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号