Abstract: | Previous studies have shown that cytoplasmic intermediate filaments, other than the keratins, are each constructed from a single type of polypeptide chain. Studies involving chemical crosslinking between lysine groups have shown that assembly of the filaments begins with the formation of dimers in which the peptide chains are parallel and in exact register, and that these dimers further associate in antiparallel patterns having specific degrees of overlap. In the present study, molecular modeling of the conformations of vimentin molecules indicated that lysine side chains in identical positions in regions of α-helix in parallel chains might be unable to be linked because they are on opposite sides of the coiled coil hydrophobic core. Examination of published data on chemical crosslinking of lysines in vimentin confirmed that there were no instances of linkage within dimers between the nine pairs of identical lysines that lie more than one position within α-helical regions in parallel chains. Even among linkages that apparently were between dimers, only one of the 11 linkage products identified involved lysines that were both within an α-helical region. In 10 of the 11 identified linkages between dimers, one or both of the linked lysines were in regions of random coil conformation. These results of molecular modeling indicate that relative motion between polypeptide chains in oligomers of intermediate filament proteins is not sufficient to overcome an orientation of lysine groups that is unfavorable for their chemical linkage. This finding supports the interpretations of keratin cross-linking data indicating that parallel homodimers are the basis for keratin intermediate filament assembly. © 1996 Wiley-Liss, Inc. |