Abstract: | Intermediate-filament forming proteins are known to form rod-shaped dimers that are calculated to be 45 nm in length. Molecular modeling indicates that the dimerization is promoted by interchain hydrophobic interactions between sections of α helix β and helix. Further aggregation involves the formation of tetramers in which two dimers are anti-parallel and staggered to two characteristic degrees of overlap. Modeling indicated that the degrees of stagger are dictated by the association of sections of α helix in 4-chain bundles, in which hydrophobic side chains are sequestered from contact with water. The staggered arrangement of two dimers produces a tetramer having sections of 2-chain rod in which hydrophobic side chains are exposed to water. Extension of the tetramer to form protofilaments may be driven by associations with the 2-chain regions that reduce aqueous exposure of the hydrophobic side chains. Exposure of hydrophobic groups may be reduced by the 2-chain regions folding back upon themselves so that the entire tetramer becomes a 4-chain conformation. This prediction is in line with electron microscope data showing that mixtures of the lower oligomers contain rods of uniform thickness ranging upwards from 45 nm in a series having incremental increases in length. Data from previous chemical crosslinking studies support this model and also the idea that the completed intermediate filaments each consist of seven 4-chain protofilaments. Proteins 26:472–478 © 1996 Wiley-Liss, Inc. |