首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Large-conductance Ca2+-activated K+ currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells
Authors:Cai Benzhi  Gong Dongmei  Pan Zhenwei  Liu Yu  Qian Hong  Zhang Yong  Jiao Jundong  Lu Yanjie  Yang Baofeng
Institution:Department of Pharmacology, Harbin Medical University, PR China.
Abstract:Plenty of evidence suggests that increased blood levels of homocysteine (Hcy) are an independent risk factor for the development of vascular diseases, but the underlying mechanisms are not well understood. It is well known that the larger conductance Ca(2+)-activated K(+) channels (BK(Ca)) play an essential role in vascular function, so the present study was conducted to determine direct effects of Hcy on BK(Ca) channel properties of smooth muscle cells. Whole-cell patch-clamp recordings were made in mesenteric artery smooth muscle cells isolated from normal rat and patients to investigate effects of 5, 50 and 500 microM Hcy on BK(Ca), the main current mediating vascular responses in these cells. In human artery smooth muscle cells, maximum BK(Ca) density (measured at +60 mV) was inhibited by about 24% (n=6, P<0.05). In rat artery smooth muscle cells, maximum BK(Ca) density was decreased by approximately 27% in the presence of 50 microM Hcy (n=8, P<0.05). In addition, when rat artery smooth muscle cells was treated with 50 microM Hcy for 24 h, maximum BK(Ca) density decreased by 58% (n=5, P<0.05). These data suggest that Hcy significantly inhibited BK(Ca) currents in isolated human and rat artery smooth muscle cells. BK(Ca) reduced and impaired by elevated Hcy levels might contribute to abnormal vascular diseases.
Keywords:BKCa  Homocysteine  Mesenteric artery smooth muscle cells  Electrophysiology
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号