首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon nanodots with a controlled N structure by a solvothermal method for generation of reactive oxygen species under visible light
Authors:Satoshi Saita  Hideya Kawasaki
Institution:Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka, Japan
Abstract:Carbon nanodots can function as photosensitizers that have the ability to generate reactive oxygen species such as singlet oxygen, hydroxy (OH) radicals, and superoxide ions. However, most of these can only be generated upon ultraviolet light excitation. Additionally, the mechanism of reactive oxygen species generation by carbon nanodots remains unclear. The development of carbon nanodots that can photosensitize under visible light irradiation is desirable for applications such as photodynamic therapy and pollutant decomposition under visible light. Here, we report novel carbon nanodot-based photosensitizers that generate reactive oxygen species under visible light; they were synthesized using a solvothermal method with two solvents (formamide and water) and amidol as the carbon source. Carbon nanodots from the solvothermal synthesis in formamide showed blue fluorescence, while those obtained in water showed green fluorescence. The photo-excited blue-fluorescent carbon nanodots produced OH radicals, superoxide ions, and singlet oxygen, and therefore could function as both type I and type II photosensitizers. In addition, photo-excited green-fluorescent carbon nanodots generated only singlet oxygen, therefore functioning as type II photosensitizers. It is proposed that the two photosensitizers have different origins of reactive oxygen species generation: the enrichment of graphitic N for blue-fluorescent carbon nanodots and molecular fluorophores for green-fluorescent carbon nanodots.
Keywords:carbon nanodots  reactive oxygen species  type I/type II photosensitizer  visible light excitation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号