首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microgeographic variation in early fitness traits of Pinus sylvestris from contrasting soils
Authors:Azucena Jiménez-Ramírez  Aida Solé-Medina  José A Ramírez-Valiente  Juan J Robledo-Arnuncio
Institution:1. Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain

Department of Genetics, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain

Contribution: Data curation, Formal analysis, ?Investigation, Writing - original draft;2. Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (ICIFOR-INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain

Abstract:

Premise

The possibility of fine-scale intraspecific adaptive divergence under gene flow is established by theoretical models and has been confirmed empirically in tree populations distributed along steep altitudinal clines or across extreme edaphic discontinuities. However, the possibility of microgeographic adaptive divergence due to less severe but more frequent kinds of soil variation is unclear.

Methods

In this study, we looked for evidence of local adaptation to calcareous versus siliceous soil types in two nearby Mediterranean Pinus sylvestris populations connected via pollen flow. Using a greenhouse experiment, we tested for variation in early (up to three years of age) seedling performance among open-pollinated maternal families originating from each edaphic provenance when experimentally grown on both types of natural local substrate.

Results

Although seedlings were clearly affected by the edaphic environment, exhibiting lower and slower emergence as well as higher mortality on the calcareous than in the siliceous substrate, neither the performance on each substrate nor the plasticity among substrates varied significantly with seedling edaphic provenance.

Conclusions

We found no evidence of local adaptation to a non-extreme edaphic discontinuity over a small spatial scale, at least during early stages of seedling establishment. Future studies on microgeographic soil-driven adaptation should consider long-term experiments to minimize maternal effects and allow a potentially delayed expression of edaphic adaptive divergence.
Keywords:adaptive genetic divergence  calcareous soils  early fitness traits  edaphic adaptation  gene flow  local adaptation  maternal effects  Pinaceae  Scots pine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号