首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Periphyton biomass,potential production and respiration in a shallow lake during winter and spring
Authors:Lone Liboriussen  Erik Jeppesen
Institution:1.Department of Freshwater Ecology, National Environmental Research Institute,Aarhus University,Silkeborg,Denmark;2.Department of Plant Biology,Aarhus University,Aarhus,Denmark
Abstract:Abundance, depth distribution, potential productivity and respiration of periphyton on short-time (1 month) and long-time incubated strips were followed monthly during the winter–spring (January–May) transition in a shallow eutrophic lake. A taxonomic shift occurred from dominance of diatoms under ice to chlorophyte dominance in spring communities on the long-time incubated strips, while diatoms dominated until May on the short-time incubated strips. Periphyton biomass accrual was low during the ice-covered winter months (November–January: 4 mg chl a m−2 month−1), but increased to a maximum of 112 mg chl a m−2 month−1 immediately after ice-out in February. During February–April, the biomass remained constant before declining in May. Periphyton on long-time incubated strips was equally distributed in the water column in winter (January–February), but was higher near the water surface in spring (March–May). Periphyton did not change with depth on the short-time incubated strips. The potential production to respiration ratio (P/R) was negatively correlated with periphyton biomass. Throughout the study, P/R was <1 for the short-time incubated periphyton, while this was only the case in March–April for the long-time incubations. This study showed a high productive capacity of winter periphyton, resulting in accumulation of a relatively high periphytic biomass early in the season. A massive periphyton density in eutrophic lakes already in winter–spring may potentially delay or prevent the establishment and re-occurrence of submerged macrophytes in the early oligotrophication phase following a reduction of the external nutrient loading. Handling editor: Luigi Naselli-Flores
Keywords:Benthic algae  Winter dynamics  Biomass accrual  Respiration  Production  Periphyton
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号