首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的阴道微生态病理图像自动诊断
引用本文:姚泽欢,陈微,李晨,杨浩艺,何玉麟,谭郁松,李非. 基于深度学习的阴道微生态病理图像自动诊断[J]. 生物化学与生物物理进展, 2021, 48(11): 1348-1357
作者姓名:姚泽欢  陈微  李晨  杨浩艺  何玉麟  谭郁松  李非
作者单位:1)国防科技大学计算机学院,长沙 410073,1)国防科技大学计算机学院,长沙 410073,1)国防科技大学计算机学院,长沙 410073,1)国防科技大学计算机学院,长沙 410073,1)国防科技大学计算机学院,长沙 410073,1)国防科技大学计算机学院,长沙 410073,2)中国科学院计算机网络信息中心,北京 100850
基金项目:国家重点研究发展计划(2018YFB0204301),国家自然科学基金(81973244)和国防科技大学高性能计算国家重点实验室资助项目.
摘    要:阴道微生态病理图像是诊断细菌性阴道病的重要依据,但对其人工分析需要花费大量时间精力,导致诊断效率不高,因此需要寻求针对病理图像的自动诊断新方法.本文提出一种阴道微生态病理图像自动诊断模型ResLab,该模型以阴道微生态病理图像作为训练数据集,利用深度学习技术对病理图像进行端到端分析,预测Nugent评分,辅助医生进行分...

关 键 词:深度学习  图像分类  病理诊断  Nugent评分
收稿时间:2021-03-11
修稿时间:2021-06-23

Automatic Diagnosis of Vaginal Microecological Pathological Images Based on Deep Learning
YAO Ze-Huan,CHEN Wei,LI Chen,YANG Hao-Yi,HE Yu-Lin,TAN Yu-Song and LI Fei. Automatic Diagnosis of Vaginal Microecological Pathological Images Based on Deep Learning[J]. Progress In Biochemistry and Biophysics, 2021, 48(11): 1348-1357
Authors:YAO Ze-Huan  CHEN Wei  LI Chen  YANG Hao-Yi  HE Yu-Lin  TAN Yu-Song  LI Fei
Affiliation:1)College of Computer, National University of Defense Technology, Changsha 410073, China,1)College of Computer, National University of Defense Technology, Changsha 410073, China,1)College of Computer, National University of Defense Technology, Changsha 410073, China,1)College of Computer, National University of Defense Technology, Changsha 410073, China,1)College of Computer, National University of Defense Technology, Changsha 410073, China,1)College of Computer, National University of Defense Technology, Changsha 410073, China,2)Computer Network Information Center, Chinese Academy of Sciences, Beijing 100850, China
Abstract:Vaginal microflora pathological image is an important basis for the diagnosis of bacterial vaginosis, but analysis of the images manually takes a lot of time and effort, leading to low diagnosis efficiency, so new methods of automatic pathological image diagnosis need to be sought. In this paper, we proposed a model, ResLab, to diagnose vaginal microflora pathological image automatically. It took the pathological reports of gynecological examination as training set, and used deep learning technology to perform end-to-end analysis on the pathological images. The ResLab model predicted Nugent score to assist doctors in grading diagnosis. We optimized the ResLab in multiple ways to improve the prediction accuracy, by increasing the number of layers to extract deeper features, stacking two small convolution kernels to increase the receptive field, removing ReLU layers to reduce complexity, and replacing average pooling layer with max pooling layer to extract the most salient feature. It was proven that each optimization plan can significantly improve the perfomance of the model. The prediction accuracy of the ResLab model reached 82.19%, which outperformed VGG, GoogLeNet, ResNet. The ResLab model can provide doctors with relatively accurate reference results, thereby improving diagnosis efficiency and reducing diagnostic error.
Keywords:deep learning  image classification  pathological diagnosis  Nugent score
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号