首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular mechanism of the activation-induced cell death inhibition mediated by a p70 inhibitory killer cell Ig-like receptor in Jurkat T cells
Authors:Chwae Yong-Joon  Chang Mi Jung  Park Sang Myun  Yoon Ho  Park Hyun-Joo  Kim Se Jong  Kim Jongsun
Institution:Department of Microbiology and Brain, Korea 21 Project of Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.
Abstract:In this study we investigated the molecular mechanism of the activation-induced cell death (AICD) inhibition mediated by a p70 inhibitory killer cell Ig-like receptor (KIR3DL1, also called NKB1) in Jurkat T cells. Using stable Jurkat transfectants that express KIR or CD8-KIR fusion proteins we have shown for the first time that KIR inhibits, in a ligation-independent manner, the AICD induced by PHA, PMA/ionomycin, or anti-CD3 Ab. The AICD inhibition mediated by KIR appears to result from the blockade of Fas ligand induction upon activation of the Jurkat transfectants. Moreover, the membrane-proximal 20 aa of the KIR cytoplasmic tail were determined to play a crucial role in this process. Since the membrane-proximal portion of the KIR cytoplasmic tail contains a putative protein kinase C (PKC) substrate site, we investigated the molecular interaction between KIR and PKC. Immunoprecipitation analysis demonstrated that KIR constitutively bound both to PKCalpha, a conventional Ca(2+)-dependent PKC, and to PKCtheta, a novel Ca(2+)-independent PKC. Furthermore, an in vitro kinase assay revealed that PKC activation was blocked after PHA stimulation in Jurkat transfectants expressing KIR. These observations were supported by the finding that a recombinant KIR cytoplasmic tail also appeared to inhibit PKCalpha activation in vitro. Taken together these data strongly suggest that KIR inhibits the AICD of T cells by blocking Fas ligand induction upon stimulation, in a process that seems to be accomplished by PKC recruitment to the membrane-proximal PKC binding site and subsequent inhibition of PKC activation against the activating stimuli.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号