首页 | 本学科首页   官方微博 | 高级检索  
     


Gastric HCO3-stimulated ATPase: Evidence against its microsomal localization in rat fundus mucosa
Authors:Annick Soumarmon   Miguel Lewin   Anne Marie Cheret  Serge Bonfils
Affiliation:Unité de Recherches de Gastroentérologie, INSERM U. 10, Hôpital Bichat, 170 Bd Ney, F. 75877 Paris Cedex 18 France
Abstract:Rat gastric mucosa was shown to contain a Mg2+-dependent ATPase which is stimulated by HCO3 at pH 8–9.Triton X-100 solubilizes this HCO3-stimulated, Mg2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3).The gastric mucosa was resolved into five subcellular fractions by differential centrifugation. A large granule fraction (Fraction M), 28 000 g · min, was characterized by cytochrome c oxidase (marker enzyme for mitochondria). A microsomal fraction (Fraction P), 2 760 000 g · min, was characterized by 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) (plasma membrane).The Mg2+-dependent ATPase was demonstrated to have a bimodal mitochondrial membranous localization: 24% of its activity is associated with cytochrome c oxidase, and 75% with 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) at pH 8.The HCO3 addition resulted in two opposite effects: (1) a strong stimulation (84%) in Fraction M; (2) a slight inhibition (12%) in Fraction P.Fraction M was subfractionated by equilibration on a sucrose gradient. It gave rise to a homogeneous mitochondrial (d, 1.17–1.21) Mg2+-dependent ATPase, closely associated with cytochrome c oxidase. This ATPase is strongly stimulated (×2) by HCO3. The subfractionation of Fraction P gave rise to two distinct ATPases: (1) the major one is associated with membranous (d, 1.10–1.15) material marked by 5′-nucleotidase and is slightly inhibited by HCO3; (2) the other is associated with denser (d, 1.17–1.21) material and is stimulated by HCO3.The bicarbonate-stimulated fraction of the Mg2+-dependent ATPase activity found in the gastric microsomal fraction is assumed to arise from mitochondrial cross-contamination. Further support comes from the optimal HCO3 concentration. In addition, SCN is shown to specifically inhibit the ATPase of Fraction M.From these results it appears that the implication of HCO3-stimulated ATPase in the gastric secretion of H+ is not as clear as had been suggested. However, in the view of an ATPase-supported model for H+ secretion, attention can be directed towards the Mg2+-dependent ATPase found to be associated with microsomes.
Keywords:To whom correspondence should be sent.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号