首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of primary carbon metabolism in Kluyveromyces lactis
Authors:Breunig   Bolotin-Fukuhara   Bianchi   Bourgarel   Falcone   Ferrero   Frontali   Goffrini   Krijger   Mazzoni   Milkowski   Steensma   Wésolowski-Louvel   Zeeman
Affiliation:

a Institut für Genetik, Martin-Luther-Universität Halle, Halle, Germany

b Université Paris-Sud, Institute de Genetique et Microbiologie, Paris, France

c Department of Cell and Developmental Biology, University of Roma, La Sapienza, Rome, Italy

d Istituto di Genetica, Università degli Studi di Parma, Parma, Italy

e Institute of Molecular Plant Science, Leiden University, and Kluyverinstitute for Biotechnology, Delft University of Technology, Leiden, The Netherlands

f Institut Curie, Orsay, France

g Centre de Génétique Moleculaire et Cellulaire, Université Claude Bernard, France

Abstract:In the recent past, through advances in development of genetic tools, the budding yeast Kluyveromyces lactis has become a model system for studies on molecular physiology of so-called “Nonconventional Yeasts.” The regulation of primary carbon metabolism in K. lactis differs markedly from Saccharomyces cerevisiae and reflects the dominance of respiration over fermentation typical for the majority of yeasts. The absence of aerobic ethanol formation in this class of yeasts represents a major advantage for the “cell factory” concept and large-scale production of heterologous proteins in K. lactis cells is being applied successfully. First insight into the molecular basis for the different regulatory strategies is beginning to emerge from comparative studies on S. cerevisiae and K. lactis. The absence of glucose repression of respiration, a high capacity of respiratory enzymes and a tight regulation of glucose uptake in K. lactis are key factors determining physiological differences to S. cerevisiae. A striking discrepancy exists between the conservation of regulatory factors and the lack of evidence for their functional significance in K. lactis. On the other hand, structurally conserved factors were identified in K. lactis in a new regulatory context. It seems that different physiological responses result from modified interactions of similar molecular modules.
Keywords:Crabtree effect   Glucose repression   Glucose transport   Rag mutants   Fermentation   Respiration   Yeast
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号