首页 | 本学科首页   官方微博 | 高级检索  
     


Time-resolved protein crystallography.
Authors:L. N. Johnson
Affiliation:Laboratory of Molecular Biophysics, University of Oxford, United Kingdom.
Abstract:Advances in synchrotron radiation technology have allowed exposure times from protein crystals of the order of milliseconds to be used routinely, and in exceptional circumstances exposure times of 100 ps have been obtained. However, many data sets take seconds to record because of the slow time scale of film change or crystal reorientation or translation when more than one exposure is required. This problem has been addressed by Amemiya et al. (1989). There has been considerable progress in methods to initiate reactions in protein crystals, especially the development of photolabile caged compounds but also temperature jump, pH jump, and diffusion. Although flash lamps deliver pulses of 100 mJ/ms, often several pulses are required to release sufficient product, and reaction initiation can take several seconds. Laser illumination can provide more powerful input, but the laser must be accommodated within the restricted space at the synchrotron station. The requirement to maintain synchrony among the molecules in the crystal lattice as the reaction proceeds and to ensure that the lifetime of intermediates is longer than data collection rates emphasizes the need for chemical characterization of the reaction under study. As Ringe advocated in the studies with chymotrypsin, it may be more profitable to devise conditions under which certain intermediates along the reaction pathway accumulate in the crystal and to record these in a series of discrete steps rather than continuous monitoring of the reaction. The Laue method is limited to those proteins that give well-ordered crystals and problems of transient disorder on initiation of reaction and problems of radiation damage need to be overcome or avoided by suitable experimental protocols.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号