首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fluorescence energy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles
Authors:M Rehorek  N A Dencher  M P Heyn
Abstract:Fluorescence energy transfer between the donor diphenylhexatriene (DPH) and the acceptor retinal and fluorescence depolarization of DPH are used to test current theories for fluorescence energy transfer in two-dimensional systems and to obtain information on the effect of the intrinsic membrane protein, bacteriorhodopsin, on the order and dynamics of the lipid phase. Increasing the surface concentration of acceptors by raising the protein to lipid ratio leads to a decrease in the mean fluorescence lifetime by up to a factor of four. When the acceptor concentration is reduced at a fixed protein to lipid ratio by photochemical destruction of retinal, the lifetime increases and reaches approximately the value observed in protein-free vesicles when the bleaching is complete. The shape of the decay curve and the dependency of the mean lifetime on the surface concentration of acceptors are in agreement with theoretical predictions for a two-dimensional random distribution of donors and acceptors. From this analysis a distance of closest approach between donors and acceptors of approximately 18 A is obtained, which is close to the effective radius of bacteriorhodopsin (17 A) and consistent with current ideas about the location of retinal in the interior of the protein. In the absence of energy transfer (bleached vesicles), the steady-state fluorescence anisotropy, -r, of DPH is considerably lower than in the corresponding unbleached vesicles, indicating that the effect of energy transfer must be taken into account when interpreting -r in terms of order and dynamics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号