首页 | 本学科首页   官方微博 | 高级检索  
   检索      

基于2-C-甲基-D-赤藓糖醇-4磷酸途径的产紫槐二烯大肠杆菌构建及其补糖策略优化
引用本文:汪建峰,熊智强,张嗣良,王勇.基于2-C-甲基-D-赤藓糖醇-4磷酸途径的产紫槐二烯大肠杆菌构建及其补糖策略优化[J].生物工程学报,2014,30(1):64-75.
作者姓名:汪建峰  熊智强  张嗣良  王勇
作者单位:华东理工大学 生物反应器工程国家重点实验室,上海 200237;中国科学院上海生命科学研究院 植物生理生态研究所 合成生物学重点实验室,上海 200032;中国科学院上海生命科学研究院 植物生理生态研究所 合成生物学重点实验室,上海 200032;华东理工大学 生物反应器工程国家重点实验室,上海 200237;中国科学院上海生命科学研究院 植物生理生态研究所 合成生物学重点实验室,上海 200032
基金项目:国家重点基础研究发展计划 (973计划) (No. 2012CB721104),国家高技术研究发展计划 (863计划) (No. 2012AA02A701),国家自然科学基金 (Nos. 31170101, 31100073),中国科学院知识创新工程重大项目 (No. KSCX2-EW-J-12) 资助。
摘    要:2-C-甲基-D-赤藻糖醇-4-磷酸(2-methyl-D-erythritol-4-phosphate, MEP) 途径是大肠杆菌Escherichiacoli 唯一的萜类前体合成途径,研究表明它比甲羟戊酸(Mevalonate, MVA)途径具有更高的理论产率。但目前有关MEP 途径的调控所知非常有限,故单独强化MEP 途径对萜类异源合成产量的提高效果并不理想。研究中通过引入外源MEP 途径基因强化E. coli 萜类合成的遗传改造策略和发酵过程补糖控制优化,尝试更有效地释放MEP 途径的潜力,建立青蒿素前体——紫槐二烯的高密度发酵过程。研究结果表明共表达阿维链霉菌Streptomyces avermitilis dxs2 基因和枯草芽胞杆菌Bacillus subtilis idi 基因可使紫槐二烯的摇瓶发酵产量比野生菌株提高12.2 倍。随后针对该菌株建立了高密度发酵过程,发现稳定期的中前期(24?72 h) 是产物合成的关键期,通过稳定期补糖速率的调整,明显改善了产物合成速度,使紫槐二烯的产量从2.5 g/L 提高到了4.85 g/L,但不影响产物积累的周期。考虑到72 h 后菌体老化可能会影响产物合成,进一步采取了调整对数期的补糖速率控制菌体生长的策略,使紫槐二烯的产量达到6.1 g/L。研究结果为基于MEP 途径的萜类异源合成工程菌构建及其发酵工艺的建立奠定了基础。

关 键 词:M  E  P途径  紫槐二烯  大肠杆菌  高密度发酵  补糖速率
收稿时间:2013/9/30 0:00:00

Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control
Jianfeng Wang,Zhiqiang Xiong,Siliang Zhang and Yong Wang.Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control[J].Chinese Journal of Biotechnology,2014,30(1):64-75.
Authors:Jianfeng Wang  Zhiqiang Xiong  Siliang Zhang and Yong Wang
Institution:State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Abstract:The pathway of 2-methyl-D-erythritol-4-phosphate (MEP) is the exclusive isoprenoid precursor biosynthesis in Escherichia coli, with a higher theoretical yield than mevalonate (MVA) pathway. However, due to lack of information about the regulation of MEP pathway, only engineering MEP pathway in E. coli achieved limited improvement of heterologous isoprenoid production. We used exogenous MEP pathway genes to improve MEP pathway in E. coli and optimized the glucose feeding to release the potential of MEP pathway. The results demonstrate that co-expression of dxs2 from Streptomyces avermitilis and idi from Bacillus subtilis can increase amorphadiene production with 12.2-fold compared with the wild-type strain in shake flask fermentation. Then we established a high-cell density fermentation process for the engineered strain, and found that the phase from 24 to 72 h is important for product biosynthesis. The optimization of glucose feeding rate during 24 to 72 h significantly improved product accumulation, which was improved from 2.5 to 4.85 g/L, within the same process time. Considering the attenuation of strain metabolism after 72 h, this study further modulated the glucose feeding rate during exponential phase to control strain growth and the amorphadiene yield reached to 6.1 g/L. These results provided useful information to develop engineered E. coli for isoprenoid production through MEP pathway engineering.
Keywords:2-methyl-D-erythritol-4-phosphate pathway (MEP pathway)  isoprenoids  Escherichia coli  high-cell density fermentation  glucose feeding rate
本文献已被 CNKI 等数据库收录!
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号