Functional torque-velocity and power-velocity characteristics of elite athletes |
| |
Authors: | Nigel A. S. Taylor James D. Cotter Stephen N. Stanley Robert N. Marshall |
| |
Affiliation: | Department of Human Movement Science, University of Wollongong, NSW, Australia. |
| |
Abstract: | Technical limitations of some isokinetic dynamometers have called into question the validity of some data on human muscle mechanics. The Biodex dynamometer has been shown to minimize the impact artefact while permitting automatic gravity correction. This dynamometer was used to study quadriceps muscle torque and power generation in elite power (n = 6) and elite endurance (n = 7) athletes over 12 randomly assigned isokinetic velocities from 30 degrees.s-1 to 300 degrees.s-1. The angle at peak torque varied as a negative, linear function of angular velocity, with the average angle across test velocities being 59.5 degrees (SD 10.2 degrees). Power athletes developed greater peak torque at each angular velocity (P less than 0.05) and experienced a 39.7% decrement in torque over the velocity range tested. Endurance athletes encountered a 38.8% decline in peak torque. Torques measured at 60 degrees of knee flexion followed a similar trend in both groups; however the greatest torques were recorded at 60 degrees.s-1 rather than at 30 degrees.s-1. Leg extensor muscle power increased monotonically with angular velocity in both power (r2 = 0.728) and endurance athletes (r2 = 0.839); however these curves diverged significantly so that the power athletes produced progressively more power with each velocity increment. These inter group differences probably reflected a combination of natural selection and training adaptation. |
| |
Keywords: | Force-velocity Torque Strength Dynamometry |
本文献已被 SpringerLink 等数据库收录! |