The identification of protein-protein interactions of the nuclear pore complex of Saccharomyces cerevisiae using high throughput matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry |
| |
Authors: | Huang Lan Baldwin Michael A Maltby David A Medzihradszky Katalin F Baker Peter R Allen Nadia Rexach Michael Edmondson Ricky D Campbell Jennifer Juhasz Peter Martin Steven A Vestal Marvin L Burlingame Alma L |
| |
Affiliation: | University of California, San Francisco, California 94143-0446, USA. |
| |
Abstract: | Mass spectrometry has become the technology of choice for detailed identification of proteins in complex mixtures. Although electrophoretic separation, proteolytic digestion, mass spectrometric analysis of unseparated digests, and database searching have become standard methods in widespread use, peptide sequence information obtained by collision-induced dissociation and tandem mass spectrometry is required to establish the most comprehensive and reliable results. Most tandem mass spectrometers in current use employ electrospray ionization. In this work a novel tandem mass spectrometer employing matrix-assisted laser desorption ionization-time-of-flight/time-of-flight operating at 200 Hz has been used to identify proteins interacting with known nucleoporins in the nuclear pore complex of Saccharomyces cerevisiae. Proteins interacting with recombinant proteins as bait were purified from yeast extracts and then separated by one-dimensional SDS-PAGE. Although peptide mass fingerprinting is sometimes sufficient to identify proteins, this study shows the importance of employing tandem mass spectrometry for identifying proteins in mixtures or as covalently modified forms. The rules for incorporating these features into MS-Tag are presented. In addition to providing an evaluation of the sensitivity and overall quality of collision-induced dissociation spectra obtained, standard conditions for ionization and fragmentation have been selected that would allow automatic data collection and analysis, without the need to adjust parameters in a sample-specific fashion. Other considerations essential for successful high throughput protein analysis are discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|