首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of soil moisture on the tolerance of Lupinus pilosus genotypes to a calcareous soil
Authors:Brand  J.D.  Tang  C.  Graham  R.D.
Abstract:Commercial narrow-leafed lupins (Lupinus angustifolius L.) grown on calcareous soils commonly display chlorotic symptoms resembling Fe deficiency. The severity of chlorosis increases with concurrent increases in soil moisture content. Our research has indicated that the rough-seeded lupin species, Lupinus pilosus Murr., has a range of adaptation to calcareous soils, from tolerant to intolerant. A pot experiment was conducted comparing a tolerant, a moderately tolerant and a moderately intolerant genotype of L. pilosus. Plants were grown for 35 days in a calcareous soil (50% CaCO3) at three moisture contents (80%, 100% and 120% of field capacity); the growth was compared with that on a fertile black cracking clay control soil at 70% of field capacity. Visual chlorosis score, chlorophyll meter readings, number of leaves and shoot dry weights were recorded at 14, 21, 28 and 35 days after sowing. Concentrations of chlorophyll, active Fe and nutrients in the youngest fully expanded leaves were also measured. Results showed that increased soil moisture increased the severity of chlorotic symptoms (increased chlorosis score) in all genotypes. The tolerant genotype showed significantly less symptoms than other genotypes at all moisture contents. All genotypes were able to recover from chlorosis symptoms at 80% moisture in the calcareous soil. Chlorosis score negatively correlated with chlorophyll meter readings, chlorophyll concentration and foliar active and total Fe, and Mn concentrations. Visual chlorosis score appeared to be a cost effective, accurate and efficient method enabling classification of the tolerance of genotypes. The chlorotic symptoms were likely to be due to HCO3- induced nutrient deficiencies or a direct effect of HCO3- on chlorophyll synthesis. This study indicates that the most probable mechanism of tolerance is related to an ability to prevent uptake of HCO3- or efficiently sequester it once inside the root which prevents increases in internal pH and transport to the shoots.
Keywords:bicarbonate soil moisture  calcium carbonate  iron chlorosis  lupin
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号