Protein conformational changes of Agrobacterium phytochrome Agp1 during chromophore assembly and photoconversion |
| |
Authors: | Noack Steffi Michael Norbert Rosen Ran Lamparter Tilman |
| |
Affiliation: | Pflanzenphysiologie, Freie Universit?t Berlin, K?nigin Luise Strasse 12-16, D-14195 Berlin, Germany. |
| |
Abstract: | Phytochromes are widely distributed photochromic biliprotein photoreceptors. Typical bacterial phytochromes such as Agrobacterium Agp1 have a C-terminal histidine kinase module; the N-terminal chromophore module induces conformational changes in the protein that lead to modulation of kinase activity. We show by protein cross-linking that the C-terminal histidine kinase module of Agp1 mediates stable dimerization. The fragment Agp1-M15, which comprises the chromophore module but lacks the histidine kinase module, can also form dimers. In this fragment, dimer formation was stronger for the far-red-absorbing form Pfr than for the red-absorbing form Pr. The same or similar behavior was found for Agp1-M15Delta9N and Agp1-M15Delta18N, which lack 9 and 18 amino acids of the N-terminus, respectively. The fragment Agp1-M20, which is derived from Agp1-M15 by truncation of the C-terminal "PHY domain" (191 amino acids), can also form dimers, but dimerization is independent of irradiation conditions. The cross-linking data also showed that the PHY domain is in tight contact with Lys 16 of the protein and that the nine N-terminal amino acids mediate oligomer formation. Limited proteolysis shows that the hinge region between the chromophore module and the histidine kinase and a part of the PHY domain become exposed upon Pr to Pfr photoconversion. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|