首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bifurcation of orbits and synchrony in inferior olive neurons
Authors:Keum W Lee  Sahjendra N Singh
Institution:Division of Electronic and Information Technology, Kwandong University, Gangwon, South Korea. kwlee@kwandong.ac.kr
Abstract:Inferior olive neurons (IONs) have rich dynamics and can exhibit stable, unstable, periodic, and even chaotic trajectories. This paper presents an analysis of bifurcation of periodic orbits of an ION when its two key parameters (a, μ) are varied in a two-dimensional plane. The parameter a describes the shape of the parabolic nonlinearity in the model and μ is the extracellular stimulus. The four-dimensional ION model considered here is a cascade connection of two subsystems (S(a) and S(b)). The parameter plane (a - μ) is delineated into several subregions. The ION has distinct orbit structure and stability property in each subregion. It is shown that the subsystem S(a) or S(b) undergoes supercritical Poincare-Andronov-Hopf (PAH) bifurcation at a critical value μ(c)(a) of the extracellular stimulus and periodic orbits of the neuron are born. Based on the center manifold theory, the existence of periodic orbits in the asymptotically stable S(a), when the subsystem S(b) undergoes PAH bifurcation, is established. In such a case, both subsystems exhibit periodic orbits. Interestingly when S(b) is under PAH bifurcation and S(a) is unstable, the trajectory of S(a) exhibits periodic bursting, interrupted by periods of quiescence. The bifurcation analysis is followed by the design of (i) a linear first-order filter and (ii) a nonlinear control system for the synchronization of IONs. The first controller uses a single output of each ION, but the nonlinear control system uses two state variables for feedback. The open-loop and closed-loop responses are presented which show bifurcation of orbits and synchronization of oscillating neurons.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号