首页 | 本学科首页   官方微博 | 高级检索  
   检索      


X-ray microanalysis of aldehyde-fixed glycogen contrast-stained by OsVI . FeII and OsVI . RuIV complexes
Authors:W C de Bruijn  J M van Buitenen
Abstract:The composition of the contrast-donating complex of rat liver glycogen, nucleoplasm, erythrocytes, and mitochondria was established by X-ray microanalysis. In these compartments the presence of osmium and iron was shown qualitatively in tissue after glutaraldehyde fixation, treated with OsVIIIO4 plus K4FeII(CN)6 and in similar tissue treated with a combination of K2OsVIO4 plus K4FeII(CN)6. Osmium and ruthenium were detected in these compartments, in aldehyde-fixed tissue treated with mixtures containing K2RuIVL(CN)6 rather than K4FeII(CN)6. The iron detected in the glycogen, nucleoplasm, erythrocytes, and mitochondria of tissue treated with K2RuIV(CN)6 mixtures proved to derive from sources inside the electron microscope, and had to be considered an artifact. Quantitatively, the mean atomic ratios of osmium-to-iron and osmium-to-ruthenium were determined from spectra obtained by point analyses of the same compartments (glycogen, nucleoplasm, mitochondria, lipid droplets, and erythrocytes). After correction of the spectra for the instrumental iron contribution, the osmium-to-iron and osmium-to-ruthenium ratios in the glycogen were about 1:3 for tissue treated with those combinations including K2OsVIO4. In the other compartments, the osmium-to-iron and osmium-to-ruthenium ratios were virtually 1:0. For Os-VIIIO4 in combination with potassium ferrouscyanide however the osmium-to-iron ratio was 1:7 in the glycogen and 1:5 in all other compartments. OsVIIIO4 was combined with potassium ruthenium-cyanide, the osmium-to-ruthenium ratio was 1:2 in the glycogen and 2:1 in the other compartments. These results support our view that the selective glycogen contrast is obtained by complex formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号