首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Ca2+/calmodulin regulated signaling pathways in chemoattractant induced neutrophil effector functions. Comparison with the role of phosphotidylinositol-3 kinase.
Authors:Sandra Verploegen  Caroline M van Leeuwen  Hanneke W M van Deutekom  Jan-Willem J Lammers  Leo Koenderman  Paul J Coffer
Institution:Department of Pulmonary Diseases, University Medical Center Utrecht, the Netherlands.
Abstract:In human neutrophils, both changes in intracellular Ca(2+) concentrations, Ca(2+)]i, and activation of phosphatidylinositol-3 kinase (PtdIns3K) have been proposed to play a role in regulating cellular function induced by chemoattractants. In this study we have investigated the role of Ca(2+)]i and its effector molecule calmodulin in human neutrophils. Increased Ca(2+)]i alone was sufficient to induce phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2), p38 mitogen activated kinase (p38 MAPK), protein kinase B (PKB) and glycogen synthase kinase-3alpha (GSK-3alpha). Inhibition of calmodulin using a calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7), did not effect N-formyl-methionyl-leucyl-phenylalanine (fMLP) induced ERK, p38 MAPK or GSK-3alpha phosphorylation, but attenuated fMLP induced PKB phosphorylation. PCR analysis of human neutrophil cDNA demonstrated variable expression of members of the Ca(2+)/calmodulin-dependent kinase family. The roles of calmodulin and PtdIns3K in regulating neutrophil effector functions were further compared. Neutrophil migration was abrogated by inhibition of calmodulin, while no effect was observed when PtdIns3K was inhibited. In contrast, production of reactive oxygen species was sensitive to inhibition of both calmodulin and PtdIns3K. Finally, we demonstrated that chemoattractants are unable to modulate neutrophil survival, despite activation of PtdIns3K and elevation Ca(2+)]i. Taken together, our data indicate critical roles for changes in Ca(2+)]i and calmodulin activity in regulating neutrophil migration and respiratory burst and suggest that chemoattractant induced PKB phosphorylation may be mediated by a Ca(2+)/calmodulin sensitive pathway in human neutrophils.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号