首页 | 本学科首页   官方微博 | 高级检索  
     

微粒群优化神经网络及其在环境评价中的运用
引用本文:陈莉,朱卫东. 微粒群优化神经网络及其在环境评价中的运用[J]. 生态学报, 2008, 28(3): 1072-1079
作者姓名:陈莉  朱卫东
作者单位:1. 安徽建筑工业学院,合肥,230022;合肥工业大学,合肥,230009
2. 合肥工业大学,合肥,230009
基金项目:国家自然科学专项基金 , 安徽教育厅自然科学基金
摘    要:农业项目环境影响综合评价是目前新的研究领域,随着农业项目的增加,其环境影响的研究愈来愈重要.以某农业项目为例,运用PSO-BP进行农业项目环境评价;仿真和实验表明:微粒群优化神经网络,能够克服神经网络收敛速度慢,陷入局部最小的缺点;微粒群优化算法涉及的参数不多,但是微粒群优化结果是比较理想的.

关 键 词:环境评价  微粒群优化  神经网络  仿真  environmental evaluation  particle swarm optimization  Neural network  emulation  微粒群  优化神经网络  环境评价  运用  particle swarm optimization  neural network algorithm  result  pretty  good  Particle  needs  parameters  simple  Emulation  experiment  show  method of  slow  convergent  speed
文章编号:1000-0933(2008)03-1072-08
收稿时间:2007-04-13
修稿时间:2007-04-13

The enviromental quality assessment of neural network algorithm trained by
particle swarm optimization
CHEN Li and ZHU Weidong. The enviromental quality assessment of neural network algorithm trained by
particle swarm optimization
[J]. Acta Ecologica Sinica, 2008, 28(3): 1072-1079
Authors:CHEN Li and ZHU Weidong
Affiliation:Anhui Institute of Architectural and Industry, Hefei 230022, China
Hefei University of Technology, Hefei 230009, China
Abstract:The environmental effect evaluation of agricultural projects is current a new research field. With the increase of projects, the study of environmental effect appears more and more important. We applied PSO-BP to evaluate the environmental effect of an agricultural project. Emulation and experiment show that the method of neural network algorithm trained by particle swarm optimization has overcome its disadvantage of slow convergent speed and shortcoming of local optimum. Particle swarm optimization needs only a few parameters and is a simple, while the result is pretty good.
Keywords:environmental evaluation  particle swarm optimization  Neural network  emulation
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号