首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic Interactions of Petiole and Lamina During the Life of a Leaf of Castor Bean (Ricinus communis L.) Under Moderately Saline Conditions
Authors:JESCHKE, W. DIETER   PATE, JOHN S.
Abstract:Ion (K+, Na+, Mg2+, Ca2+ and Cl~) flows and partitioning in thepetiole and lamina of leaf 6 of castor bean {Ricinus communisL.) plants growing in the presence of a mean of 71 mol m–3NaCl were described by an empirical modelling technique. Thiscombined data on changes in ion contents of petiole and lamina,ion: carbon molar ratios of phloem bleeding sap and pressure-inducedxylem exudates of the leaf with previously described informationon the economies of C and N in identical leaf material. Datawere expressed as daily exchanges of ions in xylem and phloem,or depicted as models of ion balance and transport activityof petiole and lamina during four consecutive phases of leaflife. The early import phase was characterized by high intakeof K and Mg through phloem, and of Ca mainly through xylem,but only limited intake of Na and Cl. The next phase up to fullleaf expansion showed similar relative differences in xylemintake between ions and the onset of rapid phloem export fromthe lamina of K and Mg, some export of Na and Cl but scarcelyany of Ca. The next mature phase, marked by maximal photosynthesisand transpiration by the leaf, showed high xylem intake of allions in xylem. This was more than matched by phloem export ofMg and K, but by only fractional re-export of Na and Cl andagain very limited cycling through the leaf of Ca. The finalpre-senescence phase exhibited similar behaviour, but with generallygreater contribution to phloem transport from mobilization ofion reserves of the lamina. The petiole retained particularlylarge amounts of Na and Cl in its early growth, thereby protectingthe lamina from excessive entry of salt, but these petiolarpools, together with those or other nutrient ions, were laterpartially mobilized to the lamina via the xylem stream. Datawere discussed in relation to the relatively high salt toleranceexhibited by the species. Key words: Ricinus communis, xylem and phloem transport, ion balance, K+ economy, Na+ exclusion, NaCl-stress, salt tolerance, leaf development
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号