首页 | 本学科首页   官方微博 | 高级检索  
     


Role of mitochondria in kainate-induced fast Ca2+ transients in cultured spinal motor neurons
Authors:Grosskreutz Julian  Haastert Kirsten  Dewil Maarten  Van Damme Philip  Callewaert Geert  Robberecht Wim  Dengler Reinhard  Van Den Bosch Ludo
Affiliation:Academic Neurology Unit, University of Sheffield, Medical School, United Kingdom. j.grosskreutz@sheffield.ac.uk
Abstract:Motor neuron death in amyotrophic lateral sclerosis (ALS) has been linked to selective vulnerability towards AMPA receptor-mediated excitotoxicity. We investigated intracellular mechanisms leading to impairment of motor neuron Ca2+ homeostasis with near physiological AMPA receptor activation. Using fast solution exchange on patch-clamped cultured neurons, kainate (KA) was applied for 2s. This induced a transient increase in the cytosolic Ca2+ concentration ([Ca2+]c) for seconds. Inhibition of the mitochondrial uniporter by RU-360 abolished the decay of the Ca2+ transient and caused immediate [Ca2+]c overload. Repetitive short KA stimulation caused a slowing of the decay of the Ca2+ transient and a gradual increase in peak and baseline [Ca2+]c in motor neurons, but not in other neurons, indicating saturation of the mitochondrial buffer. Furthermore, mitochondrial density was lower in motor neurons and, in a network of neurons with physiological synaptic AMPA receptor input, RU-360 acutely induced an increase in Ca2+ transients. We conclude that motor neurons have an insufficient mitochondrial capacity to buffer large Ca2+ elevations which is partly due to a reduced mitochondrial density per volume compared to non-motor neurons. This may exert deleterious effects in motor neuron disease where mitochondrial function is thought to be compromised.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号