首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Systematic study of cis-antisense miRNAs in animal species reveals miR-3661 to target PPP2CA in human cells
Authors:Jian Wang  Zongcheng Li  Bailong Liu  Guangnan Chen  Ningsheng Shao  Xiaomin Ying  Ya Wang
Institution:1.Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322, USA;2.Beijing Institute of Basic Medical Sciences, Beijing 100850, China;3.The First Norman Bethune Hospital of Jilin University, Changchun 130012, China
Abstract:MicroRNAs (miRNAs) suppress targeting gene expression through blocking translation or triggering mRNA degradation and, in general, act in trans, through a partially complementary interaction with the 3′ untranslated region (3′ UTR) or coding regions of a target gene. Although it has been reported previously that some miRNAs suppress their target genes on the opposite strand with a fully complementary sequence (i.e., natural antisense miRNAs that act in cis), there is no report to systematically study such cis-antisense miRNAs in different animal species. Here we report that cis-antisense miRNAs do exist in different animal species: 48 in Caenorhabditis elegans, 17 in Drosophila, 36 in Mus musculus, and 52 in Homo sapiens using a systematical bioinformatics approach. We show that most of these cis-antisense miRNAs can efficiently reduce the expression levels of their target genes in human cells. We further investigate hsa-miR-3661, one of the predicted cis-antisense miRNAs, in detail and demonstrate that this miRNA directly targets the coding sequence of PPP2CA located on the opposite DNA strand and inhibits the PPP2CA expression. Taken together, these results indicate that cis-antisense miRNAs are conservative and functional in animal species including humans.
Keywords:miRNA  cis-antisense  gene expression  miR-3661  PPP2CA  human cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号