首页 | 本学科首页   官方微博 | 高级检索  
     


A Combination of Mitochondrial Oxidative Stress and Excess Fat/Calorie Intake Accelerates Steatohepatitis by Enhancing Hepatic CC Chemokine Production in Mice
Authors:Tadashi Moro  Sachie Nakao  Hideaki Sumiyoshi  Takamasa Ishii  Masaki Miyazawa  Naoaki Ishii  Tadayuki Sato  Yumi Iida  Yoshinori Okada  Masayuki Tanaka  Hideki Hayashi  Satoshi Ueha  Kouji Matsushima  Yutaka Inagaki
Abstract:Mitochondrial oxidative stress is considered as a key accelerator of fibrosis in various organs including the liver. However, the production of oxidative stress and progression of liver fibrosis may merely represent the independent consequences of hepatocellular injury caused by the primary disease. Because of a lack of appropriate experimental models to evaluate the sole effects of oxidative stress, it is virtually unknown whether this stress is causatively linked to the progression of liver fibrosis. Here, we examined the direct effects of mitochondrial reactive oxygen species (ROS) on the progression of high fat/calorie diet-induced steatohepatitis using Tet-mev-1 mice, in which a mutated succinate dehydrogenase transgene impairs the mitochondrial electron transport and generates an excess amount of ROS in response to doxycycline administration. Wild type and Tet-mev-1 mice that had been continuously given doxycycline-containing water were subsequently fed either normal chow or a cholesterol-free high-fat/high-sucrose diet for 4 months at approximately 1 or 2 years of age. Histopathological examinations indicated that neither the mitochondrial ROS induced in Tet-mev-1 mice nor the feeding of wild type animals with high-fat/high-sucrose diet alone caused significant liver fibrosis. Only when the Tet-mev-1 mice were fed a high-fat/high-sucrose diet, it induced lipid peroxidation in hepatocytes and enhanced hepatic CC chemokine expression. These events were accompanied by increased infiltration of CCR5-positive cells and activation of myofibroblasts, resulting in extensive liver fibrosis. Interestingly, this combinatorial effect of mitochondrial ROS and excess fat/calorie intake on liver fibrosis was observed only in 2-year-old Tet-mev-1 mice, not in the 1-year-old animals. Collectively, these results indicate that mitochondrial ROS in combination with excess fat/calorie intake accelerates liver fibrosis by enhancing CC chemokine production in aged animals. We have provided a good experimental model to explore how high fat/calorie intake increases the susceptibility to nonalcoholic steatohepatitis in aged individuals who have impaired mitochondrial adaptation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号