首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Picomolar inhibitors as transition-state probes of 5'-methylthioadenosine nucleosidases.
Authors:Jemy A Gutierrez  Minkui Luo  Vipender Singh  Lei Li  Rosemary L Brown  Gillian E Norris  Gary B Evans  Richard H Furneaux  Peter C Tyler  Gavin F Painter  Dirk H Lenz  Vern L Schramm
Institution:Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
Abstract:Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic 1'- (3)H] and 1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large 1'- (3)H] and unity 1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity 1'- (3)H] and significant 1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号