首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the interaction between tyrphostin 9 and human serum albumin using biophysical and computational methods
Authors:Salanee Kandandapani  Nor Farrah Wahidah Ridzwan  Saharuddin B. Mohamad
Affiliation:1. Biochemistry Programme, Biomolecular Research Group, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia;2. Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia;3. Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
Abstract:Abstract

Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, K sv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9–HSA complex. The binding constant of Tyr 9–HSA interaction was found to lie within the range 3.48–1.69?×?105 M?1 at three different temperatures, i.e. 15 °C, 25 °C and 35?°C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug–HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein’s thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow’s Site I of HSA as the preferred Tyr 9 binding site.

Communicated by Ramaswamy H. Sarma
Keywords:Tyrphostin 9  human serum albumin  fluorescence quenching  drug–protein interaction  molecular docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号