首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sugar Crystallization and Glass Transition as Destabilizing Factors of Protein-Stabilized Emulsions
Authors:Leonardo Cornacchia and Yrj? H Roos
Institution:(1) School of Food and Nutritional Sciences, University College Cork, Cork, Ireland;
Abstract:Temperature cycling across the glass transition of the aqueous phase of oil-in-water emulsions stabilized by whey protein isolate was considered as a possible factor affecting stability. Emulsions were formulated with an aqueous phase containing 80% (w/w) fructose, fructose:glucose 1:1 or glucose, in order to prepare a glass forming aqueous phase with sugar concentration corresponding to that of the unfrozen phase of the maximally freeze-concentrated solutions. This allowed thermal cycling across the glass transition in the absence of the formation of ice crystals. Emulsion stability was studied using differential scanning calorimetry, dynamic light scattering and by visual analysis of the morphology of the systems. Emulsified systems undergoing glass transition cycles of the aqueous phase did not show destabilization of the dispersed (crystallized) lipid phase. Sugar crystallization in the aqueous phase, which occurred when glucose systems were stored above the Tg, led to emulsion breakdown. In this study, the formation of a glassy structure in the continuous aqueous phase preserved the interfacial structure of WPI, thus protecting the dispersed lipid phase from destabilization. On the contrary, glucose crystallization caused disruption of the interfacial membrane structure and loss of integrity of the interface which resulted in extensive lipid phase destabilization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号