首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model
Authors:Pooria Akbarzadeh
Institution:1.School of Mechanical Engineering,Shahrood University of Technology,Shahrood,Iran
Abstract:In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号