首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Laminin-induced Clustering of Dystroglycan on Embryonic Muscle Cells: Comparison with Agrin-induced Clustering
Authors:Monroe W Cohen  Christian Jacobson  Peter D Yurchenco  Glenn E Morris  and Salvatore Carbonetto
Institution:*Department of Physiology, McGill University, Montreal, Quebec, Canada H3G1Y6; ?Centre for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Montreal, Quebec, Canada H3G 1A4; §Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854; and MRIC Biotechnology Group, The North East Wales Institute, Plas Coch, Mold Road, Wrexam, United Kingdom LL11 2AW
Abstract:The effect of laminin on the distribution of dystroglycan (DG) and other surface proteins was examined by fluorescent staining in cultures of muscle cells derived from Xenopus embryos. Western blotting confirmed that previously characterized antibodies are reactive in Xenopus. In control cultures, αDG, βDG, and laminin binding sites were distributed as microclusters (<1 μm2 in area) over the entire dorsal surface of the muscle cells. Treatment with laminin induced the formation of macroclusters (1–20 μm2), accompanied by a corresponding decline in the density of the microclusters. With 6 nM laminin, clustering was apparent within 150 min and near maximal within 1 d. Laminin was effective at 30 pM, the lowest concentration tested. The laminin fragment E3, which competes with laminin for binding to αDG, inhibited laminin-induced clustering but did not itself cluster DG, thereby indicating that other portions of the laminin molecule in addition to its αDG binding domain are required for its clustering activity. Laminin-induced clusters also contained dystrophin, but unlike agrin-induced clusters, they did not contain acetylcholine receptors, utrophin, or phosphotyrosine, and their formation was not inhibited by a tyrosine kinase inhibitor. The results reinforce the notion that unclustered DG is mobile on the surface of embryonic muscle cells and suggest that this mobile DG can be trapped by at least two different sets of molecular interactions. Laminin self binding may be the basis for the laminin-induced clustering.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号