首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Novel Dual-Compartment,Continuous-Flow Wetland Microcosm to Assess Cis-Dichloroethene Removal from the Rhizosphere
Authors:Ilisa Tawney  Jennifer G Becker  Andrew H Baldwin
Institution:1. Department of Environmental Science and Technology , University of Maryland , College Park, Maryland, USA;2. GeoSyntec Consultants , Columbia, Maryland, USA;3. Department of Environmental Science and Technology , University of Maryland , College Park, Maryland, USA
Abstract:The anaerobic biodegradation of tetrachloroethene commonly results in the accumulation of chlorinated intermediates such as cis-1,2-dichloroethene (cDCE). Frequently, groundwater contaminated with chlorinated ethenes discharges to natural wetlands. The goal of this study was to quantitatively evaluate the effects of wetland plants and microorganisms on the fate of cDCE in the wetland rhizosphere. To accomplish this goal, a novel dual-compartment wetland microcosm was designed. A Phragmites australis individual was maintained in the microcosm, which was operated with continuous flows of air and mineral medium through the foliar and rhizosphere compartments, respectively, to incorporate mass transfer/transport processes that are important in natural wetlands and allow steady-state assessment of changes in dissolved O2 and cDCE or 1,2–14C]cDCE levels. Substantial amounts of 14C]cDCE were phytovolatilized through a healthy P. australis individual to the foliar chamber. Rhizodegradation by native microorganisms associated with P. australis roots also converted substantial amounts of 14C]cDCE to 14C-labeled CO2 and non-volatile compounds, presumably through cometabolic reactions that could be enhanced by the release of O2 and exudates by P. australis. These results suggest that, in some cases, the intrinsic capacity of native wetland plants and microorganisms to remove cDCE from the rhizosphere may be substantial.
Keywords:rhizoremediation  phytoremediation  natural attenuation  wetlands  microcosm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号