首页 | 本学科首页   官方微博 | 高级检索  
     


Cytogenetic studies on the effect of feeding mice with stored wheat grains treated with malathion
Affiliation:1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China;3. Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Nanning 530023, China;4. Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China;1. Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK;2. University of Exeter Medical School, European Centre for Environment & Human Health (ECEHH), Truro, TR1 3HD, UK;3. University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth, PL4 8AA, UK;4. University of Plymouth, School of Geography, Earth and Environmental Sciences, Drake Circus, Plymouth, PL4 8AA, UK;1. School of the Environment, Flinders University, Adelaide, SA, Australia;2. Rho Environmetrics, Adelaide, SA, Australia;1. Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India;2. Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
Abstract:The cytogenetic effect of malathion residues in wheat grains stored for different periods of time (4, 12, 24 weeks) was evaluated in Swiss mice. The studies included: (1) chromosomal aberrations analysis in bone-marrow and spermatocyte cells; (2) chromosomal aberrations and sister chromatid exchange (SCE) analysis in spleen cell culture from mice fed with stored wheat grains. The tested doses were 8.36 (applied dose), 25.08 and 41.80 mg malathion kg−1 wheat grains. The results demonstrated that the cytogenetic effect induced in different mouse tissues by malathion residues was dose-dependent and increased with increasing of both feeding and storage periods.Feeding mice with wheat grains stored for 4 weeks had a non-significant effect with respect to the induction of chromosomal aberrations or SCEs. Significant chromosome damage and increase of SCEs were observed in mice fed with wheat grains stored for 12 weeks. The maximum effect was recorded in mice fed for 12 weeks with the grains treated with the highest tested dose and stored for 24 weeks. However, mitomycin C i.p.-injected in mice at 1 mg kg−1 body weight (b.w.) (positive control) induced a higher effect. The percentage of chromosome aberrations reached 13.60±0.98, 13.60±0.77 and 11.73±0.98 (P<0.01) in bone-marrow, cultured spleen cells and spermatocytes, respectively. The significant increase of abnormalities in spermatocytes was seen for univalent formation only, predominantly of the sex chromosomes. The frequency of SCEs was 10.76±0.62 per cell (P<0.01) in cultured spleen cells compared with 5.46±0.45 per cell for control and 14.66±0.54 per cell for the positive control.The obtained results indicate that malathion residues in stored wheat grains have potential genotoxic effect in mice under the conditions tested.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号