首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distribution and fluidizing action of soluble and aggregated amyloid beta-peptide in rat synaptic plasma membranes.
Authors:R P Mason  R F Jacob  M F Walter  P E Mason  N A Avdulov  S V Chochina  U Igbavboa  W G Wood
Institution:Membrane Biophysics Laboratory, Departments of Medicine and Biochemistry, MCP Hahnemann University School of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212-4772, USA.
Abstract:The effects of soluble and aggregated amyloid beta-peptide (Abeta) on cortical synaptic plasma membrane (SPM) structure were examined using small angle x-ray diffraction and fluorescence spectroscopy approaches. Electron density profiles generated from the x-ray diffraction data demonstrated that soluble and aggregated Abeta1-40 peptides associated with distinct regions of the SPM. The width of the SPM samples, including surface hydration, was 84 A at 10 degrees C. Following addition of soluble Abeta1-40, there was a broad increase in electron density in the SPM hydrocarbon core +/-0-15 A from the membrane center, and a reduction in hydrocarbon core width by 6 A. By contrast, aggregated Abeta1-40 contributed electron density to the phospholipid headgroup/hydrated surface of the SPM +/-24-37 A from the membrane center, concomitant with an increase in molecular volume in the hydrocarbon core. The SPM interactions observed for Abeta1-40 were reproduced in a brain lipid membrane system. In contrast to Abeta1-40, aggregated Abeta1-42 intercalated into the lipid bilayer hydrocarbon core +/-0-12 A from the membrane center. Fluorescence experiments showed that both soluble and aggregated Abeta1-40 significantly increased SPM bulk and protein annular fluidity. Physico-chemical interactions of Abeta with the neuronal membrane may contribute to mechanisms of neurotoxicity, independent of specific receptor binding.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号