首页 | 本学科首页   官方微博 | 高级检索  
     


RIP2, a checkpoint in myogenic differentiation
Authors:Munz Barbara  Hildt Eberhard  Springer Matthew L  Blau Helen M
Affiliation:Baxter Laboratory for Genetic Pharmacology, Stanford University Medical Center, Stanford, California 94305-5175, USA.
Abstract:Using a subtractive cDNA library hybridization approach, we found that receptor interacting protein 2 (RIP2), a tumor necrosis factor receptor 1 (TNFR-1)-associated factor, is a novel early-acting gene that decreases markedly in expression during myogenic differentiation. RIP2 consists of three domains: an amino-terminal kinase domain, an intermediate domain, and a carboxy-terminal caspase activation and recruitment domain (CARD). In some cell types, RIP2 has been shown to be a potent inducer of apoptosis and an activator of NF-kappa B. To analyze the function of RIP2 during differentiation, we transduced C2C12 myoblasts with retroviral vectors to constitutively produce RIP2 at high levels. When cultured in growth medium, these cells did not show an enhanced rate of proliferation compared to controls. When switched to differentiation medium, however, they continued to proliferate, whereas control cells withdrew from the cell cycle, showed increased expression of differentiation markers such as myogenin, and began to differentiate into multinucleated myotubes. The complete RIP2 protein appeared to be necessary to inhibit myogenic differentiation, since two different deletion mutants lacking either the amino-terminal kinase domain or the carboxy-terminal CARD had no effect. A mutant deficient in kinase activity, however, had effects similar to wild-type RIP2, indicating that phosphorylation was not essential to the function of RIP2. Furthermore, RIP proteins appeared to be important during myogenic differentiation in vivo, as we detected a marked decrease in expression of the RIP2 homolog RIP in several muscle tissues of the dystrophic mdx mouse, a model for continuous muscle degeneration and regeneration. We conclude that RIP proteins can act independently of TNFR-1 stimulation by ligand to modulate downstream signaling pathways, such as activation of NF-kappa B. These results implicate RIP2 in a previously unrecognized role: a checkpoint for myogenic proliferation and differentiation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号