首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies
Authors:Miyakoshi Kei  Murphy Melinda J  Yeoman Richard R  Mitra Siddhartha  Dubay Christopher J  Hennebold Jon D
Institution:Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Beaverton, Oregon 97006, USA.
Abstract:Proteolytic activities are essential for follicular growth, ovulation, as well as for luteal formation and regression. Using suppression subtractive hybridization (SSH), a novel mouse ovary-selective gene (termed protease serine 35, Prss35) was identified. Analysis of the mouse genome database using the Prss35 sequence led to the identification of a homologous protease (protease serine 23, Prss23). PRSS35 possesses general features that are characteristic of serine (Ser) proteases, but is unique in that the canonical Ser that defines this enzyme family is replaced by a threonine (Thr). In contrast, PRSS23 possesses the standard catalytic Ser typical for this family of proteases. As determined by real-time polymerase chain reaction (PCR), the Prss35 mRNA levels increased around the time of ovulation and remained elevated in the developing corpus luteum. Steroid ablation/replacement studies demonstrated progesterone-dependent regulation of Prss35 gene expression prior to follicle rupture. Prss35 gene expression was localized to the theca cells of pre-antral follicles, the theca and granulosa cells of pre-ovulatory and ovulatory follicles, as well as to the developing corpus luteum. In contrast, Prss23 mRNA levels decreased transiently after ovulation induction and again in the postovulatory period. Prss23 gene expression was noted primarily in the granulosa cells of the secondary/early antral follicles. PRSS35 and PRSS23 orthologs in the rat, human, rhesus macaque, chimpanzee, cattle, dog, and chicken were identified and found to be highly homologous to one another (75-99% homology). Collectively, these results suggest that the PRSS35 and PRSS23 genes have been conserved as critical ovarian proteases throughout the course of vertebrate evolution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号