首页 | 本学科首页   官方微博 | 高级检索  
     


Cryopreservation of human endothelial cells for vascular tissue engineering
Authors:Lehle Karla  Hoenicka Markus  Jacobs Volker R  Schmid Franz X  Birnbaum Dietrich E
Affiliation:Clinic of Cardiothoracic Surgery, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany. Karla.Lehle@klinik.uni-regensburg.de
Abstract:To investigate the influence of cryopreservation on endothelial cell growth, morphology, and function human umbilical vein endothelial cells (HUVECs) were frozen following a standard protocol. Cell suspensions were exposed to 10% dimethyl sulfoxide in a high-potassium solution, cooled to -80 degrees C at 1 degrees C/min and stored in liquid nitrogen for 7-36 days. Samples were thawed in a 37 degrees C water bath and the cryoprotectant was removed by serial dilution. The growth of cell suspensions was assayed by culturing 7300 cells/cm2 for 3-5 days in order to determine the cell multiplication factor. Fresh and cryopreserved/thawed cells were analyzed for their growth, and their anti-inflammatory and anti-coagulant function by using cellular ELISA. Cryopreservation resulted in a retrieval of 66 +/- 5% and a viability of 79 +/- 3%. Cryopreserved/thawed and fresh cells showed identical doubling times and identical cell counts in the confluent monolayers. However, the lag phase of thawed HUVECs was approximately 36 h longer, resulting in significant differences in the cell multiplication factor at 3 and 5 days after seeding. After expansion to a sufficient cell count the lag phases were identical. Fresh and cryopreserved/thawed cells showed comparable anti-inflammatory and anti-coagulant activity, as judged by the basal and TNF-induced VCAM-1, ICAM-1, E-selectin, and thrombomodulin expression. Cryopreserved/thawed and recultivated endothelial cells are suitable for endothelialization of autologous allograft veins. Such tissue-engineered grafts will offer the necessary clinical safety for those patients who lack autologous material.
Keywords:Cryopreservation   Dimethyl sulfoxide   Endothelial cells   Growth   Function   Tissue engineering
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号