首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell swelling stimulates cytosol to membrane transposition of ICln
Authors:Ritter Markus  Ravasio Andrea  Jakab Martin  Chwatal Sabine  Fürst Johannes  Laich Andreas  Gschwentner Martin  Signorelli Sara  Burtscher Carmen  Eichmüller Sonja  Paulmichl Markus
Institution:Department of Physiology, University of Innsbruck, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria. markus.ritter@uibk.ac.at
Abstract:ICln is a multifunctional protein that is essential for cell volume regulation. It can be found in the cytosol and is associated with the cell membrane. Besides its role in the splicing process, ICln is critically involved in the generation of ion currents activated during regulatory volume decrease after cell swelling (RVDC). If reconstituted in artificial bilayers, ICln can form ion channels with biophysical properties related to RVDC. We investigated (i) the cytosol versus cell membrane distribution of ICln in rat kidney tubules, NIH 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and LLC-PK1 epithelial cells, (ii) fluorescence resonance energy transfer (FRET) in living fibroblasts between fluorescently tagged ICln and fluorochromes in the cell membrane, and (iii) possible functional consequences of an enhanced ICln presence at the cell membrane. We demonstrate that ICln distribution in rat kidneys depends on the parenchymal localization and functional state of the tubules and that cell swelling causes ICln redistribution from the cytosol to the cell membrane in NIH 3T3 fibroblasts and LLC-PK1 cells. The addition of purified ICln protein to the extracellular solution or overexpression of farnesylated ICln leads to an increased anion permeability in NIH 3T3 fibroblasts. The swelling-induced redistribution of ICln correlates to altered kinetics of RVDC in NIH 3T3 fibroblasts, LLC-PK1 cells, and MDCK cells. In these cells, RVDC develops more rapidly, and in MDCK cells the rate of swelling-induced depolarization is accelerated if cells are swollen for a second time. This coincides with an enhanced ICln association with the cell membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号