首页 | 本学科首页   官方微博 | 高级检索  
     


An amphitropic cAMP-binding protein in yeast mitochondria. 1. Synergistic control of the intramitochondrial location by calcium and phospholipid
Authors:G Müller  W Bandlow
Affiliation:Institut für Pathologie und Rechtsmedizin, Universit?t Ulm, München, Federal Republic of Germany.
Abstract:A cAMP-binding protein is found to be integrated into the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae under normal conditions. It resists solubilization by high salt and chaotropic agents. The protein is, however, converted to a soluble form which then resides in the intermembrane space, when isolated mitochondria are incubated with low concentrations of calcium. Phospholipids or diacylglycerol (or analogues) dramatically increases the efficiency of receptor release from the inner membrane, whereas these compounds alone are ineffective. Also, cAMP does not effect or enhance liberation from the membrane of the cAMP-binding protein. Photoaffinity labeling with 8-N3-[32P]cAMP followed by mitochondrial subfractionation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis does not reveal differences in the apparent molecular weight between the membrane-bound and the soluble form of the cAMP receptor. The two forms differ, however, in their partitioning behavior in Triton X-114 as well as in their protease resistance, indicating that the release from the membrane is accompanied by a change in lipophilicity and conformation of the receptor protein. Evidence is presented that a change of the intramitochondrial location of the yeast cAMP-binding protein also occurs in vivo and leads to the activation of a mitochondrial cAMP-dependent protein kinase. The cAMP-binding protein is the first example of a mitochondrial protein with amphitropic character; i.e., it has the property to occur in two different locations, as a membrane-embedded and a soluble form.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号